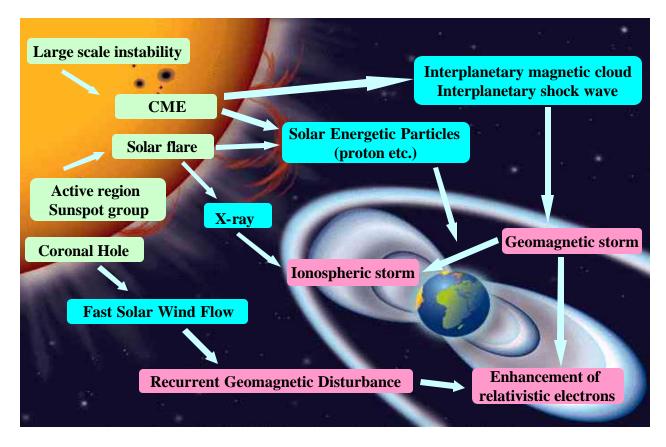


Living With a Star Sentinels

Adam Szabo

Laboratory for Extraterrestrial Physics NASA Goddard Space Flight Center Greenbelt, Maryland, USA


LWS MOWG

NASA HQ – June 19-20, 2003

Primary Objective

Discover, understand and model the <u>connection</u> between solar phenomena and geospace disturbances.

Chronology

 The LWS Science Architecture Team and Sentinels Pre-Formulation Team presented science objectives, observational strategies and possible mission scenarios to NASA HQ.

March 2000 - July 2001

• International LWS program initiated.

May 2001

LWS SAT Findings and Report

July – September 2001

• First Heliospheric Strategy Panel Meeting.

November 2002

• HSP Report Completed

Fall 2003

LWS Sentinels SDT formed

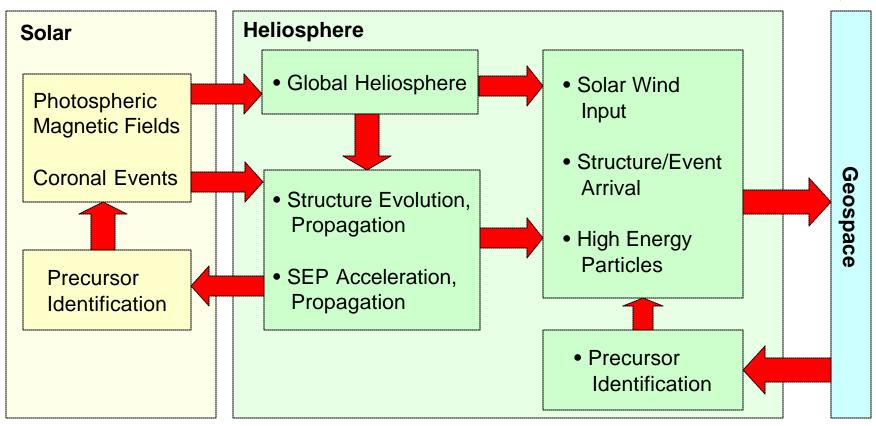
Early 2004

Heliospheric Strategy Panel Charter

Objectives:

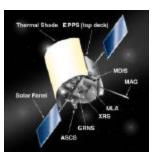
Assist the LWS Sentinels Project Scientist by identifying the near-term strategy to make progress towards the LWS heliospheric science objectives. In particular:

- Identify heliospheric measurements required to accomplish the LWS program objectives.
- Determine to what extent current and future assets could be used to contribute toward the LWS heliospheric objectives and make recommendations for improved utilization.
- Identify current and past mission data sets relevant for the LWS heliospheric objectives that are not publicly available and suggest possible solutions.


Heliospheric Strategy Panel Members

Primary	<i>'</i>	Adviso	ory	Project	
Nat Gopalswamy Dennis Haggerty Steve Kahler Davin Larson Glenn Mason Chuck Smith John Steinberg Adam Szabo	Berkeley GSFC APL AFRL Berkeley U. Maryland Bartol LANL GSFC NRL U. Michigan	Joan Feynman Len Fisk Tony Galvin Bob Lin David McComas Dick Mewaldt Ed Roelof	JPL U. Michigan UNH Berkeley LANL Caltech APL	Nicky Fox Bob Hoffman Barbara Giles Vic Pizzo David Sibeck Chris StCyr Barbara Thompson Ron Zwickl	APL GSFC GSFC NOAA GSFC GSFC NOAA

LWS Heliospheric System Objectives


- Identify gaps in current state of knowledge
- Determine areas of research where progress is most likely

Sentinels

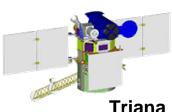
Preliminary Recommendations (1)

When possible, fill observational gaps using future NASA missions:

STEREO – Extend mission as late as possible MESSENGER – Collect cruise data

SOLO

Cultivate international partnerships, ILWS:


Solar Orbiter – *In situ* instrumentation, telemetry Bepi-Colombo – Interplanetary and cruise data Ulysses – Continuation of mission

Extend the capabilities of existing near-Earth solar wind assets:

L1 Cluster – Forge unified observatory from ACE, WIND, Genesis, SOHO Triana – Seek opportunities for launch

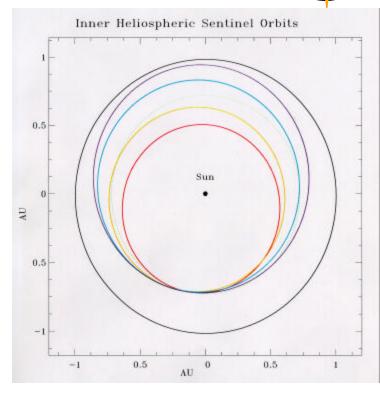
Sentinels

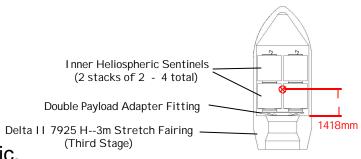
Preliminary Recommendations (2)

 Establish SDT for US component to improve on current space holder:

Spacecraft: 4 identical spinning s/c with at least five-year lifetime.

Orbits: 4 elliptical heliocentric orbits $(0.5 - 0.95 \times 0.72 \text{ AU})$ in the ecliptic.


Instruments: Magnetometer, solar wind analyzer, energetic particle detector, radio waves instrument.


Space Access: Single launch on a medium class ELV (Delta II 7925H)

Cost: \$300M - \$350M including launch vehicle and 2 years of operations.

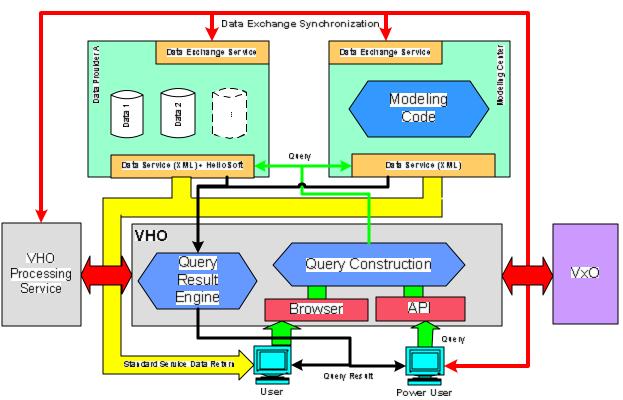
Limitations: No coverage within 0.5 AU

No latitudinal coverage outside of the ecliptic.

Preliminary Recommendations (3)

The Role of Theory and Modeling

- Vigorous support of heliospheric modeling through TR&T particularly at the solar and magnetospheric interfaces
- Establish close ties between modeling center output and observational data services



Preliminary Recommendations (4)

Data Services

- Develop a distributed data environment for all heliospheric missions, the Virtual Heliospheric Observatory (VHO)
- Treat observational data, processing service, and model output providers in similar fashion.
- Encourage interdisciplinary interaction.

